Plazer-don.ru

Сварочное оборудование
13 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

Количество теплоты при прохождении тока

Количество теплоты при прохождении тока

В 1841 году английский физик Джеймс Джоуль экспериментально доказал наличие зависимости количества выделяемой теплоты от силы тока. А в 1842 году, независимо от него к тому же выводу пришел русский ученый Эмилий Ленц, измерявший в течение нескольких лет количество времени, необходимое для нагрева спирта в сосуде на 10°С. Окончательное же определение закона Джоуля-Ленца было опубликовано в 1843 году.

Формулировка закона Джоуля-Ленца, основанная на работах обоих ученых, звучит так: при прохождении электрического тока по проводнику количество теплоты, выделяемое в проводнике, прямо пропорционально квадрату тока, сопротивлению проводника и времени, в течение которого электрический ток протекал по проводнику.

Что такое удельная тепловая мощность электрического тока

Раздел ОГЭ по физике: 3.9.Закон Джоуля-Ленца
Раздел ЕГЭ по физике: 3.2.8. Работа электрического тока. Закон Джоуля–Ленца

Рассмотрим Закон Джоуля-Ленца и его применение.

При прохождении электрического тока по проводнику он нагревается. Это происходит потому, что перемещающиеся под действием электрического поля свободные электроны в металлах и ионы в растворах электролитов сталкиваются с молекулами или атомами проводников и передают им свою энергию. Таким образом, при совершении током работы увеличивается внутренняя энергия проводника, в нём выделяется некоторое количество теплоты, равное работе тока, и проводник нагревается: Q = А или Q = IUt . Учитывая, что U = IR, в результате получаем формулу:

Q = I 2 Rt , где

Q — количество выделяемой теплоты (в Джоулях)
I — сила тока (в Амперах)
R — сопротивление проводника (в Омах)
t — время прохождения (в секундах)

♦ Закон Джоуля–Ленца : количество теплоты, выделяемое проводником с током, равно произведению квадрата силы тока, сопротивления проводника и времени прохождения тока.

В XIX в. независимо друг от друга англичанин Д. Джоуль и россиянин Э. Ленц изучали нагревание проводников при прохождении электрического тока и опытным путём обнаружили закономерность: количество теплоты, выделяющееся при прохождении тока по проводнику, равно произведению квадрата силы тока, сопротивления проводника и времени: Q = I 2 Rt (в случае постоянных силы тока и сопротивления). Эту закономерность называют законом Джоуля-Ленца. Данный закон дает количественную оценку теплового действия электрического тока.

Читайте так же:
Количество теплоты выделяемое током величина

Применяя закон Ома, можно получить эквивалентные формулы: Q = IUt , Q= U 2 t/R

Где применяется закон Джоуля-Ленца ?

1. Например, в лампах накаливания и в электронагревательных приборах применяется закон Джоуля-Ленца. В них используют нагревательный элемент, который является проводником с высоким сопротивлением. За счет этого элемента можно добиться локализованного выделения тепла на определенном участке. Выделение тепла будет появляться при повышении сопротивления, увеличении длины проводника, выбором определенного сплава.

2. Одной из областей применения закона Джоуля-Ленца является снижение потерь энергии. Тепловое действие силы тока ведет к потерям энергии. При передаче электроэнергии, передаваемая мощность линейно зависит от напряжения и силы тока, а сила нагрева зависит от силы тока квадратично, поэтому если повышать напряжение, при этом понижая силу тока перед подачей электроэнергии, то это будет более выгодно. Но повышение напряжения ведет к снижению электробезопасности. Для повышения уровня электробезопасности повышают сопротивление нагрузки соответственно повышению напряжения в сети.

3. Также закон Джоуля-Ленца влияет на выбор проводов для цепей. Потому что при неправильном подборе проводов возможен сильный нагрев проводника, а также его возгорание. Это происходит когда сила тока превышает предельно допустимые значения и выделяется слишком много энергии.

Нагревание проводов является вредным, поскольку приводит к потерям электроэнергии при передаче ее от источника к потребителю. Для уменьшения этих потерь силу тока уменьшают, повышая напряжение источника с тем, чтобы передаваемая мощность осталась прежней. Чтобы избежать электрического пробоя изоляции проводов, их поднимают на большую высоту на мачтах высоковольтных линий электропередач, связывающих крупные электростанции с городами и поселками, отстоящими от них на десятки и сотни километров.

закон джоуля-ленца

Вы смотрели конспект урока физики в 8 классе «Закон Джоуля-Ленца и его применение».
Выберите дальнейшие действия:

Площадь поперечного сечения электрического кабеля, которым подключаются нагревательные котлы, выбирается исходя из испытываемых нагрузок, которые в свою очередь зависят от мощности последних. Соответственно, чем выше мощность нагревательного котла, тем более толстый кабель необходимо закладывать.

Читайте так же:
Что такое тема тепловой ток

Зависимость сечения кабеля от двух основных показателей котлов – силы тока и мощности приведена в таблице ниже.

Сила тока, А Мощность, кВт Сечение кабеля, мм2
745(4) х 2,5
965(4) х 2,5
1285(4) х 2,5
15105(4) х 4
21145(4) х 6
27185(4) х 6
33225(4) х 6
36245(4) х 10
45305(4) х 10
53365(4) х 16
67455(4) х 16
88605(4) х 25

Материалы с низким удельным сопротивлением

К проводникам относят большинство металлов, графит, электролиты. Такие материалы обладают низким удельным сопротивлением. В металлах положительно заряженные ионы образуют узлы кристаллической решётки, окружённые облаком электронов. Их принято называть общими за вхождение в состав зоны проводимости.

Хотя не до конца понятно, что такое электрон, его принято описывать как частицу, движущуюся внутри кристалла с тепловой скоростью в сотни км/с. Это намного больше, чем нужно, чтобы вывести космический корабль на орбиту. Одновременно скорость дрейфа, образующая электрический ток под действием вектора напряжённости, едва достигает сантиметра в минуту. Поле распространяется в среде со скоростью света (100 тыс. км/ с).

В результате указанных соотношений становится возможным выразить удельную проводимость через физические величины (см. рисунок):

Формула для расчётов

Формула для расчётов

  • Заряд электрона, e.
  • Концентрация свободных носителей, n.
  • Масса электрона, me.
  • Тепловая скорость носителей,
  • Длина свободного пробега электрона, l.

Уровень Ферми для металлов лежит в пределах 3 – 15 эВ, а концентрация свободных носителей почти не зависит от температуры. Поэтому удельная проводимость, а значит, и сопротивление определяется строением молекулярной решётки и её близостью к идеалу, свободой от дефектов. Параметры определяют длину свободного пробега электронов, легко найти в справочниках, если требуется произвести вычисления (к примеру, с целью определения удельного сопротивления).

Читайте так же:
Тепловая завеса потребляемый ток

Лучшей проводимостью обладают металлы с кубической решёткой. Сюда относят и медь. Переходные металлы характеризуются гораздо большим удельным сопротивлением. Проводимость падает с ростом температуры и при высоких частотах переменного тока. В последнем случае наблюдается скин-эффект. Зависимость от температуры линейная выше некого предела, носящего имя нидерландского физика Петера Дебая.

Отмечаются и не столь прямолинейные зависимости. К примеру, температурная обработка стали повышает количество дефектов, что закономерно снижает удельную проводимость материала. Исключением из правила стал отжиг. Процесс снижает плотность дефектов, что за счёт чего удельное сопротивление уменьшается. Яркое влияние оказывает деформация. Для некоторых сплавов механическая обработка приводит к заметному повышению удельного сопротивления.

Объёмное представление свойства

Объёмное представление свойства

Расчет тепловой мощности

Для оценки тепловой энергии существует формула определения мощности через количество теплоты: N = Q/Δ t, где Q – это количество теплоты, выраженное в джоулях, а Δ t – время выделения энергии в секундах.

При оценочных расчетах также используется специальный коэффициент (КПД), указывающий на объем израсходованного тепла. Он находится как отношение полезной энергии к мощности тепловых потерь и выражается в процентах.

Объем затраченной энергии для помещений зависит от их строительных особенностей. Тот же показатель для батарей определяется используемыми при их изготовлении материалами и особенностями конструкции.

Более точный тепловой расчет

Грамотный выбор нагревательного оборудования возможен лишь после ознакомления с порядком расчета тепловой мощности, требуемой в каждом конкретном случае. Формула, используемая для его точного определения, выглядит так: P=V∆TK= ккал/час:

  • V – объем обогреваемого помещения, измеряемый в метрах кубических.
  • ∆Т – разница между температурой воздуха вне и внутри помещения.
  • К – коэффициент потерь тепла.

Последняя величина зависит от материала стен. На основании проведенных специалистами измерений для неутепленной деревянной конструкции она составляет 3,0-4,0. Точные значения К для различных вариантов утепления приведены ниже:

  • Для зданий из одинарной кирпичной кладки и с упрощенными конструкциями окон и крыши (так называемая «простая» теплоизоляция) К=2,0-2,9.
  • Утепление среднего качества (К=1,0-1,9). Это типовая конструкция, под которой понимается двойная кладка, крыша с обычной кровлей, ограниченное количество окон.
  • Высококачественное утепление (К=0,6-0,9), предполагающее кирпичные стены с усиленной теплоизоляцией, малое число окон со сдвоенными рамами, прочное основание пола и крышу с надежными теплоизоляторами.
Читайте так же:
Какое должно быть сечение провода для теплого пола

В качестве примера будет рассмотрен точный расчет мощности для нагреваемого помещения объемом 5 х 16 х 2,5 = 200 метров кубических. ∆Т определяется как разница показателя снаружи -20 °С и внутри помещения +25 °С. Принимается вариант со средней удельной теплоизоляцией (К=1-1,9). По усредненным условиям эксплуатации берем 1,7. Рассчитываем: 200 х 45 х 1,7 = 15 300 ккалчас. Исходя из того, что 1 кВт = 860 ккалчас, в итоге имеем: 15 300860 = 17,8 кВт.

Мощность некоторых электрических приборов

При оснащении современной квартиры часто приходится решать задачи по согласованию нагрузок в отдельных линиях. Необходимо правильно встраивать защитный автомат, чтобы предотвратить аварийные ситуации. Начинают с уточнения параметров проводки. Далее проверяют группы подсоединенной бытовой техники. Типичные параметры потребляемой мощности (Вт):

  • персональный компьютер – 170-1 250;
  • ноутбук – 40-280;
  • ЖКИ телевизор – 120-265;
  • утюг – 450-1850;
  • кондиционер – 1 200 – 2 500.

Какой автомат подойдет, определяют с учетом всех значимых факторов. Особое внимание уделяют нагрузкам с высокими значениями реактивной составляющей мощности.

Элементарная классическая теория электропроводности металлов

Постулат теории Друде-Лоренца: свободные электроны в металле находятся в состоянии беспорядочного непрерывного движения, и в этом смысле совокупность электронов в металле представляет «электронный газ».

Опыт Рикке: в 1901 г. Рикке взял три цилиндра, два медных и один алюминиевый с тщательно отшлифованными торцами. После взвешивания цилиндры были сложены вместе в последовательности медь — алюминий — медь. Через такой составной проводник непрерывно в течение года пропускался ток одного и того же направления. Итог: было доказано, что что ток в металлах имеет неатомную природу.

голоса
Рейтинг статьи
Ссылка на основную публикацию
Adblock
detector